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On the new invariance algebras and superalgebras of 
relativistic wave equations 

W I Fushchich and A G Nikitin 
Institute of Mathematics, Academy of Sciences of Ukrainian SSR, Repin Street 3, Kiev-4, 
USSR 

Received 31 October 1985 

Abstract. We show that any relativistic wave equation for a particle with mass m > 0 and 
arbitrary spin s is invariant under the Lie algebra of the group GL(2s + 1 ,  C ) .  The explicit 
form of basis elements of this algebra is given for any s. The complete sets of the symmetry 
operators of the Dirac and Maxwell equations are obtained, which belong to the classes 
of the first- and second-order differential operators with matrix coefficients. Corresponding 
new conservation laws and constants of motion are found. 

1. Introduction 

The classical Lie approach is the main mathematical apparatus used for the analysis 
of the symmetry of partial differential equations (Ames 1965, Ovsjannikov 1978). This 
approach was that from which it was established that the Poincari group is the maximal 
symmetry group of the Dirac equation (Danilov 1968, Ibragimov 1969) and that the 
maximal symmetry of Maxwell’s equations is determined by the conformal group 
replenished by the Heaviside-Larmor-Rainich transformation. However, in spite of 
its power and universality, the Lie approach does not make it possible to find all the 
symmetry operators of the given equation. Actually it gives the possibility or finding 
only such symmetry operators which are the first-order differential operators. 

Using the non-Lie approach (Fushchich 1970, 1971, 1974, 1978), in which the 
invariance group generators may be differential operators of any order and even 
integro-diff erential operators, the new invariance groups of a number of relativistic 
wave equations have been found. It has been demonstrated that the Dirac equation 
was invariant under the group SU(2) x SU(2) (Fushchich 1970, 1971, Fushchich and 
Nikitin 1977) and that the Kemmer-Duffin-Petiau equation for the vector field was 
invariant under the group SU(3) x SU(3) (Nikitin er a1 1976, Fushchich and Nikitin 
1977). The non-Lie approach gave the possibility of finding the additional symmetry 
of the Dirac and Kemmer-Duffin-Petiau equations describing the particles in an 
external electromagnetic field (Fushchich and Nikitin 1978, Nikitin 1978). The hidden 
symmetry of Maxwell’s equations has also been found and is described by the eight- 
parameter transformation group including the subgroup of Heaviside- Larmor-Rainich 
transformations (Fushchich and Nikitin 1978, 1979a, b, 1983). 

In this paper we continue to study the symmetry of the Dirac, Weyl and Maxwell 
equations and of relativistic wave equations for any spin particles. The main results 
obtained here may be formulated as follows. 
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(i) We found that any PoincarC-invariant wave equation for a particle of arbitrary 
spin s and mass m = 0 is additionally invariant under the 2(2s + 1)(2s + 1)-dimensional 
Lie algebra which is isomorphic to the Lie algebra of the group GL(2s + 1, C). The 
explicit form of basis elements of this invariance algebra is found for any value of s. 
Thus the additional symmetry of an arbitrary relativistic wave equation is described 
whereas previously one studied, as a rule, the symmetry properties of specific equations. 

(ii) In our earlier work we restricted ourselves to studying symmetry operators of 
relativistic wave equations which belong to a finite-dimensional Lie algebra (Fushchich 
1983). Here we also consider the symmetry operators belonging to the classes of first- 
and second-order differential operators with matrix coefficients which, generally speak- 
ing, are not the basis elements of any finite-dimensional Lie algebra, but are closely 
connected with conservation laws. The complete set of symmetry operators of the 
Dirac equation in the class of first-order differential operators with matrix coefficients 
(class tm,) is found. We also obtain the symmetry operators of the Weyl and Maxwell 
equations which form the basis of the Lie superalgebra. 

(iii) The new conservation laws and motion constants, which are connected with 
hidden symmetry of the Dirac and Maxwell equations, are found. 

The results of this paper supplement and in some sense complete, those obtained 
by us and expanded by a number of other authors (Da Silveira 1980, Straiev 1981, 
Kotelnikov 1982, Straiev and Shkolnikov 1984) by studying the additional symmetry 
of PoincarC-invariant wave equations. 

2. The additional symmetry of Poincark-invariant wave equations for arbitrary spin 
particles 

In this section we demonstrate that any relativistic wave equation for a particle of 
non-zero mass and spin s = 0 has more extensive symmetry than Poincari invariance, 
and describe this additional symmetry exactly. 

Let us write an arbitrary linear (differential or integro-differential) equation in the 
following symbolic form 

L*=O (2.1) 

where L is a linear operator defined on a vector space H, $ E H. 

the equation (2.1), if 
Let Q be an operator defined on H. We say that Q is the symmetry operator of 

L(Q*) = 0 (2.2) 

for any + satisfying (2.1). 

Dejnition. Equation (2.1) is PoincarC-invariant and describes a particle of mass m 
and spin s if it has 10 symmetry operators P,, J,,, p, v = 0,1,2,3,  which form the 
basis of the Lie algebra of the PoincarC group, and any solution 4 satisfies the conditions 

P,P'$ = m2$ W , ~ ' + = - m ~ s ( s + l ) +  (2.3) 

w, = ~EpvpJUPP". (2.4) 

where W, is the Lubansky-Pauli vector 
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Below we consider only such equations (2.1) which satisfy the given definition and 
so may be interpreted as equations for a relastivistic particle of spin s and mass m. 
The symmetry operators P,, J," of such a equation satisfy the commutation relations 

which characterise the Lie algebra of the PoincarC group P( 1,3).  The eigenvalues of 
the corresponding Casimir operators P,P" and W, Wp are fixed and given by the 
relations (2.3). Let us emphasise that we do not make any supposition with regards 
to the explicit form of the operators P, and J,,-they can be as differential operators 
of first order as non-local (integro-differential) ones. 

Theorem 1. Any PoincarC-invariant equation for a particle of mass m and spin s is 
invariant under the algebra? GL (2s+  1 ,  C).  

Proof. Let P,, J P y  be the symmetry operators of the equation (2.1) satisfying the 
commutation relations (2.5). Then by the definition (2.3) the following combinations 

are also the symmetry operators of these equations. 
Using (2.5) and the relations 

w,, p,1= 0 [ W,, W,] = i&,,,,PP W" (2.7) 

can make sure that the operators (2.6) satisfy the conditions 

It follows from (2.3) and (2.8) that on the set of the equation (2.1) solutions the 
operators (2.6) satisfy the commutation relations 

[Q:", QTul+ = i(gpuQ:A gvAQ:v-g. AQ:u - gumQ:A)$ (2.10) 

which characterise the Lie algebra of the group SL(2, C). From (2.3) and (2.9) one 
obtains the eigenvalues of corresponding Casimir operators 

(2.11) 

where lo=s,  l l = * ( s + l ) .  
So we have demonstrated that any PoincarC-invariant equation for a particle of 

non-zero mass and spin s # 0 is additionally invariant under the algebra SL(2, C) ,  the 
basis elements of which belong to the enveloping algebra of the algebra P( 1,3)  and 
are given exactly by the relations (2.6). According to (2.11) the operators (2.6) realise 
the representation D(lo,  I , )  = D(s,  i ( s +  1 ) )  of the algebra GL(2, C). Now we see that 

c1 $ = f( 1; + 1: - 1 )+ C2$ = ilol,+ 

t We use the same notation for the groups and for the corresponding Lie algebras. 
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this invariance algebra may be extended to 2(2s+ 1)-dimensional Lie algebra isomor- 
phic to the algebra GL(2s + 1, C). Exactly the basis elements of the algebra GL(2s + 
1, C)  have the following form on the set of the equation (2.1) solutions: 

+ k s  
A n + k n  = a k n ( Q l 3 - Q 0 2 )  pn 

(2.12) 

where 

Qia  Q l c  
QI2-s  - 1 + n’ &abc 

Q1 = 2 4 s  + 1) 
P:= n 

,,tfn n’-n 

m, n = 1,2, . . .2s  + 1 k = 0, 1, . . . ,2s  - n 

and a k n  are the coefficients determined by the recurrent relations 

a,, = 1 a l n  = [n(2s+ 1 - n)]-1’2 

= - 1 naA - 1 n + A  - 1 A=2,3,  . . . ,  2s-n. 

Actually the polynomials of the symmetry operators QZy given by the relations 
(2.12) manifestly are the symmetry operators of equation (2.1). Operators (2.11) form 
the basis of the algebra GL(2s + 1, C)  inasmuch as they satisfy the following commuta- 
tion relations 

[Aab, A c d ] = - [ i a b r  A c d l = a b c A a d  -8adAbc 
(2.13) 

which characterise the algebra GL(2s+ 1, C). The relations (2.13) are correct on the 
set of the equation (2.1) solutions. The validity of these solutions can be verified by 
direct calculation using the equivalent matrix representation for the basis elements of 
the algebra SL(2, C) (which is evaluated according to (2.11)) 

[ A a b r  i c d l =  b c i a d  - 8 a d i b c  a, b, c, d = 1,2, .  . . , 2 s +  1 

QL = EabcSc Q:a = -isa. 

Here Sa are the matrices which realise the representation D ( s )  of the SO(3) algebra 
in the Gelfand-Zetlin basis (Gelfand and Zetlin 1950). Thus the theorem is proved. 

So if equation (2.1) is Poinca 2 invariant and describes a particle of spin s and 
mass m > 0, it is invariant also u d e r  the algebra GL(2s + 1, C), the basis elements of 
which belong to the enveloping algebra of the algebra P(1,3). The operators (2.12) 
together with the PoincarC generators P, and J p y  form the basis of the 10+ 
2(2s+ 1)-dimensional Lie algebra isomorphic to the algebra P(1,3)0GL(2s+ 1, C). 
The last statement can easily be verified by moving to the new basis P, -$ P,, J,” + 

J W y  - Q,,, A,, + A m , ,  imn + I,,,, where 

Q l z = Z ( s - n + 1 ) ~ n n  

1 

Q03 = 1 ( S  - n + 1 ) i n n  
n n 

Q23 = % ( A n n + ]  + A n + i n )  Q31= -i[Q12, Q231 

0 0 2  = i[ Q23 , 9 0 3 1  001 = -i[Q31, 0031.  
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The theorem proved has a constructive character insofar as it gives the explicit 
form of the basis elements of additional invariance algebra via the PoincarC generators. 
Starting, for example, from the PoincarC generators for the Dirac equation 

a 1 
p = p  =i- J P Y  = X,P” -X$, +,[Y,, Y Y I  (2.14) 

where y, are the Dirac matrices, one obtains by the formula (2.6) the additional 
symmetry operators of this equation found earlier by Fushchich and Nikitin (1977). 
In an analogous way to formulae (2.6) and (2.12), the additional invariance algebras 
of the Kemmer-Duffin-Petiau and Proca equations may be obtained (see Fushchich 
and Nikitin 1977, 1983, Fushchich and Vladimirov 1981,1983) and even the invariance 
algebra of infinite-component wave equations (Fushchich and Onufrijchuck 1977) may 
be found. 

Let us note that relativistic wave equations for a particle of spin s > 0 also possess 
such additional invariance algebras which belong to the class of integro-differential 
operators (Fushchich 1970, 1974, 1978, Fushchich and Nikitin 1982, 1983, Nikitin et 
a1 1976, Nikitin 1978) and, generally speaking, are not numbered among the enveloping 
algebras of the algebra P(1,3). 

ax” P P  

3. Symmetry operators of the Dirac equation in the class 901, 

Here we consider in detail the symmetry properties of the Dirac equation 

L$= (yPp, - m)$ = O .  (3.1) 

It  is well known that the symmetry of equation (3.1) which can be found in the 
classical Lie approach is exhausted by invariance under the algebra P( 1,3), the basis 
elements of which are given in (2.14), and under a corresponding group of transforma- 
tions, i.e. the PoincarC group. 

Theorem 1 gives the possibility of extending the set of symmetry operators of the 
Dirac equation. Actually, using formulae (2.6), (2.14) and (3.1) one obtains the 
additional symmetry operators (Fushchich and Nikitin 1977, 1983) 

The operators (3.2) are the first-order differential operators with matrix coefficients 
(i.e. belong to the class ’JJZ,) and so they cannot be found in the frames of classical 
Lie approach. But these operators (with fixed sign *) form the basis of 16-dimensional 
Lie algebra together with the Poincare generators (2.14). It follows from the above 
that the Dirac equation is invariant under the 16-parameter group including the Lorentz 
transformations (generated by P,, J P v )  and the transformations which are generated 
by the operators (3.2). Specifically these transformations have the form 

+b+$’=exp(2iBQ)$=(cos 8-y ,y2s in  8)$ 

1 
x-( lFiy,)  sin 8 m 

if Q = Q?* etc (Fushchich and Nikitin 1977). 
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It may be interesting to know whether the operators (2.14) and (3.3) exhaust all 
symmetry operators of the Dirac equation in the class 2Jll. It turns out that this is not 

Here we find the complete set of symmetry operators Q E 91, for equation (3 .1 )  
so. 

which, however, do not form the basis of Lie algebra. 

Theorem 2. The Dirac equation has 26 linearly independent symmetry operators 
Q E 2Jll. These operators include the PoincarC generators (2.14), identity operator and 
fifteen operators given below 

7, = $ ~ Y ~ ( P , - w , )  

U,” = M S , “  + fic Y,P” - Y”P, 1 
A, = w, , ,xy+  xYw,, - iy, 

B = iy,( D - my,xw) 

(3 .3 )  

where 

D = x P p ,  + f i  S,” =ti[y,, Y Y I  p, v = 0, 1,2 ,3 .  (3.3’) 

Prooj To find all linearly independent symmetry operators of the Dirac equation in the 
class 9 J l  it is necessary to obtain the general solution of the following operator equations 

[ L ,  91 ‘ f Q L  (3.4) 

where L = ywp, - m, Q and f Q  are unknown operators belonging to 

A,,, fi,, e, and d are 4 x 4 matrices depending on x = (xo, x). 
Relations (3.4) mean that the operators on the RHS and LHS give the same result 

acting on arbitrary solutions of the Dirac equation. On the set of these solutions 
operator p o  can be expressed via the operators p a  with matrix coefficients: po+ = H+ = 
(yom + yoyapa)+. In other words it is sufficient to restrict ourself by considering 
symmetry operators of a form such that 

Q = B * p + G  (3 .5)  

where B and G are 4 x 4 matrices depending on x. For the operators (3.5) the invariance 
condition (3.4) reduces to the following form: 

[Po-H,  Q ] = f o ( P o - H )  (3.6) 

An unknown operator (3 .5)  can be expanded via a complete set of the Dirac matrices 
where f Q  = 0 insofar as the commutator on the LHS cannot depend on p o .  

B = Ido+ iy4d‘ + y,n” + S,,,mVL + y4yV b y  

G = l ao  + i y4a ’ + yy c y  + S,, f + y4yyg” 
(3 .7)  

where do, d’, nu,  m’”, b”, a’, a‘, c y ,  f,”, g ”  are unknown functions on x. 
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Substituting (3.5) and (3.7) into (3.6) and equating coefficients by the linearly 
independent matrices and differential operators one comes to the following system of 
partial differential equations: 

_ .  2 b" _ .  3 
b - 1 &ab& c b - 1 Eabcd c n o = b o = O  

(3.8) 
mob. = isado m:b = & a b P '  a, b, c = 1 , 2 , 3  

ad: ad: ad:: ad: 
axb ax, ax, ax* 

- a # b  -- 

m div do = 0 

d2 = -5 rot d3 

d' = -grad A' div d' = -3A' i = O ,  1 

co = -f div d + mAo 

m div d' = 2ima' 

d3 = $ rot d2  

ca  = -$(rot d2) ,  

go  = f div d2  g" = -$(rot d 3 ) ,  -imdf, 

d o  = -'i di v d o  

a' = -$ div d' +fm div d2 

grad a0 = -:iio 

grad a '=-md2-$d'  

f Oa =$do, -ai(rot d ' ) ,  

Tb = &,b,[$idL+a(rot d 0 ) , + m d f ]  

(3.9) 

where the dot denotes the derivative on xo and there is no sum by the repeated indices. 
The symbol d p  denotes a vector with components ( d r ,  d g ,  d y )  (analogous notation 
is used for other vector quantities). 

The first line in (3.9) gives the equations in the Killing form. Using this circum- 
stance it is not difficult to obtain the general solution of the system (3.9) for m # 0: 

d' = g+ Ax 

d3 =  EX^+ px+ U 

do = x x q + pxo+ Y 

d 2 =  x X E +l 

(3.10) 

Here the Greek letters denote arbitrary constants. 
So the general solution of the system (3.9) depends on 26 arbitrary numerical 

parameters. Substituting (3.7), (3.8) and (3.10) into (3.5) and using equation (3.1), 
one obtains a general expression for the symmetry operator Q~1I11~ for the Dirac 
equation as a linear combination of the Poincart group generators (2.14), identity 
operator and the operators (3.3). The theorem is proved. 

So we have obtained the complete set of the symmetry operators Q€2J11 for the 
Dirac equation with m Z 0 .  Besides the Poincart group generators (2.14) this set 
includes four operators which coincide on the set of the equation (3 .1)  solutions with 
Lubansky-Pauli vector (2.4), six operators wwv = ;( 0;" + Q L v ) ,  trivial identity operator 
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and five symmetry operators B and A,, p = 0, 1,2,3,  which belong to the enveloping 
algebra generated by the Poincari generators. 

The operators (3.3) satisfy the following commutation relations 

[ B, P,] = -2i77, [ B ,  v , ] = - i i ( P , + m A , )  

However these operators do  not form the basis of the Lie algebra inasmuch as the 
commutators [U,,,, uAU] do not belong to the class ‘n,. 

One of the most interesting consequences of the symmetry described in theorem 2 
is the existence of new conservation laws for the Dirac equation. Corresponding new 
conserved currents have the form 

(3.11) 

B, = 2 ~ ~ 7 7 ~ ~  A,,  = 2xAww,A,. 

The tensors T,,,, wpPu,  A,, and the vector B,  correspond to the symmetry operators 
T,, oPp, A, and B. All quantities (3.11) satisfy the continuity equations 

P“77,” = 0 P y ~ ” p ”  = 0 p“A,,, = 0 p “ B ,  = 0 

and so generate conservation laws. 

4. Additional symmetry of the Weyl and massless Dirac equations 

Here we study the symmetry of the Weyl equation 

‘T*P,Q = 0 

where cp is the two-component spinor and U” the Pauli matrices. Putting 

(4.1) 

(4.2) 

one may rewrite this equation in the Dirac form 

Y@P,* = 0 (4.3) 
where y” are the Dirac matrices in the Majorana representation. So we consider the 
symmetry properties of equation (4.3) in order to obtain the results which are valued 
as for the Weyl equation as for the massless Dirac one. 

TIieorem 3. The massless Dirac equation has 46 symmetry operators Q E YJl,. These 
operators are 

P,? J,”, K,, D, F FP,, FJ,,, FK,, FD, I (4.4a) 

A,  = G , , , X ~  +xu&,, ,  - y,, u p ”  = Y,P” - YYP, FA, (4.4b) 
A 

A 

where K ,  = 2x,D - p , x ~ ”  + 2Sp,x”, F = i y4;  P,, J P y  and D are given in (2.14) and 
(3.5’). 
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Prooj This can be carried out in full analogy with the proof of theorem 2. The general 
solution of the system (3.8) for the case m = 0 has the form 

d" = xx * p" + fp" ( x i -  x') + x X v u  + V"X + pUxox + h a  + W " X O  CY = 0, 1, 

d Z  = x x E + & - &+ 
d3 = x x J+  a x +   EX^+ x 

A" = - [ x ~ ~ " x ~ + ~ ~ " ( x ~ + x ~ ) +  v ~ x ~ + w " x + x " ]  

a = -$(x - p + paxo + s a )  (4.5) 

C O = ,  ca = - E a  go=[  ga = - l a  
pa = f ( - 7 + poxa + p:xo  + W : )  

Z E a b c ( p  Lxo + P ixc + j a b  = -1 L + 7;) 
and includes 46 independent parameters denoted by the Greek letters. Substituting 
(3.5) and (4.5) into (3.7) and using equation (4.3) one obtains a general expression 
for the symmetry operator of the massless Dirac equation in the form of a linear 
combination of the operators (4.4). Thus the theorem is proved. 

Among the operators (4.4) there are exactly fourteen symmetry operators, which 
do not belong to the enveloping algebra generated by the conformal group generators 
P,, J,,, K,, D and by the operator F = iy,. These essentially new symmetry operators 
are given in (4.4b). 

Operators (4.4) transform the real wavefunction $ (4.2) into real wavefunction 
$'= Q$ and so they are also the symmetry operators for the Weyl equation (4.1). 
Incidentally the linear transformations of 1,4 (4.2) generate linear and antilinear transfor- 
mations of a two-component Weyl spinor. 

The operators (4.4) do not form a basis of the Lie algebra. However, one may 
consider different subsets of the operators (4.4) which have the structure of the Lie 
algebra or superalgebra. Thus the operators (4.4a) form the basis of 32-dimensional 
Lie algebra including the Lie algebra of the conformal group. The operators J,,, S,,, 
F and A, = FP, satisfy the following commutation and anticommutation relations: 

(4.6) ESpv,  SAul+ = -2i[Jpu, PApuI = 2(g,Apvpu +guup,pA -gpdvpA -gvApppu) 
[ J p ~ )  S A u l = i ( g , ~ u A ' g ~ A S , u - g , A o ~ ~ - g ~ ~ , h )  

[SF,, A,]+ = [ w , , ~ ,  FI+ = 0 F * =  I 
[A,, A"]+ = 2P,Pv [A,, FI+ 2p, 
where the symbol [A, B ] +  denotes the anticommutator [A, B]+  = AB + BA. 

It follows from (2.5) and' (4.6) that the set of symmetry operators 
{P,, J,,, p,pW I; F, A,, 6,,} form the basis of the Lie superalgebra (which includes ten 
symmetry oerators p,p, not belonging to the class m,). 

5. The symmetry and supersymmetry of Maxwell's equations 

We shall write Maxwell's equations for the electromagnetic field in vacuum in the 
following form (Fushchich and Nikitin 1983): 

L,$ = ( i  a/dxo+ azS- p ) +  = 0 

L2" I,4 = ( p a  - s * pp.) $ = 0. 
(5.1) 
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Here 

u2=i ( l  0 -1 o), sa=('' O) 
0 Sa 

(5.2) 

where 1 and 0 are unit and zero 3 x 3 matrices, sa are the generators of irreducible 
representation D( l )  of the group SO(3) with the matrix elements ( s , ) b c  = iEabc .  The 
symbol qb denotes the six-component function, $ = column (E,, E 2 ,  E,, HI, H 2 ,  H3), 
where E, and Ha are the components of the vectors of electric and magnetic fields 
strengths. 

It is well known that the Maxwell equations are invariant under the conformal 
group C (  1,3) and under the group H of Heaviside-Larmor-Rainich transformations. 
Moreover it was found (Fushchich and Nikitin 1979a,b, 1982, 1983) that these 
equations also have the additional hidden symmetry in the class of integro-differential 
operators which is determined by the algebra GL(2, C). It was demonstrated also that 
GL(2, C)  is the most extensive invariance algebra of the Maxwell equations if one 
supposes the symmetry operators do not depend on x. 

Here we study the symmetry of the Maxwell equations in quite another aspect. 
The requirement that the symmetry operators belong to a finite-dimensional Lie algebra 
is very important if one is interested in studying the symmetry groups of the equations 
considered. However for many applications (e.g. for constructing conservation laws) 
this requirement is not essential. So we do not require that the symmetry operators of 
Maxwell's equations should belong to a finite-dimensional Lie algebra but restrict the 
class of operators considered by the second-order differential operators with constant 
matrix coefficients. In other words we consider the symmetry operators of a form such 
that 

Q = dabPaPb + CbPb -k g a, b = 1,2,3 (5.3) 
where dab, c6 and g are 6 x 6 numerical matrices. The operators (5.3) do not depend 
on p o  inasmuch as one may always express poJ, via u 2 S  pqb according to equation 
(5.1). Let us denote the class of the operators (5.3) by the symbol m2. 

We shall see that the Maxwell equations have non-trivial symmetry operators in 
the class m2 which do not belong to the enveloping algebra of the conformal group 
generators. On the other hand the analysis of more extensive classes of the Maxwell 
equation symmetry operators is very complicated and cannot be carried out within the 
framework of the present paper. 

The invariance condition for equation (5.1) under the operators (5.3) may be written 
in the following general form (Fushchich and Nikitin 1983) 

where in our case ah = a$' = 0 since the commutators on the LHS cannot depend on 
Po, and 

p$'d = g;$pbp, + f l d p c  + hayd (5.5) p l a  - 
Q - gkpbpc + f " P b  + ha 

where gkc, fk, h k  are numerical matrices, k = a or k = a, d. 

of the matrices 0," and G,"d, where 
Any of the matrices in (5.3) and (5.5) can be represented as a linear combination 

0: = a$, Gr;, = U,( Scd - S , s d  - Sds,) .  
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Here U, are the 6 x 6  Pauli matrices commuting with Sa of (5.2). Calculating the 
commutators in (5.4) and equating the coefficients by the linearly independent matrices 
and differential operators one may prove the following statement. 

Theorem 4. The Maxwell equations (5.1) have ten linearly independent symmetry 
operators Q E 2J12 which do not belong to the enveloping algebra of the Lie algebra of 
the group C(1,3)@H. These operators have the form - 

Qab = U1 q a b  Qab = u 3 q a b  (5.6) 

9.6 = [ ( s x P ) a ,  ( s x p ) b l - p 2  8.6 

where 

p 2  = p : + p :  + p : .  

Proof: The proof can be carried out in full analogy with the proofs of theorems 2 and 
3 and so can be omitted. We note only that equations (5.3)-(5.5) are satisfied by the 
46 linearly independent operators given below: 

U 0  i u o P a  UOPaPb U 0 S . P  i P a S  * P i U, 
(5.7) 

u 2 P a  i‘2p$b u 2 S  - P i u 2 ~ a S  P Qab o a  b 

where Qab and G a b  are given in (5.6). All operators of (5.7) with the exception of Qab 
and ( j a b  can be expressed via pa,  ~ . p  = $ E , ~ ~ J . ~ P ~  and u2, where Jab and pa are the 
PoincarC generators given by the formulae (2.14) with 4i[ya, yb] ’  Eabcsc ,  u2 is the 
matrix of (5.2) (which is the generator of the Heaviside-Larmor-Rainich transforma- 
tions). 

Note 1. From twenty operators (5.6) exactly ten are linearly independent in so far as 

(911 + Q22+ Q 3 A +  = ( O i l  + d 2 2 +  CL)+ = O  
where + is an arbitrary solution of equations (5.1). 

Note 2. The operators ab, p $  and a$ from (5.4) which correspond to the symmetry 
operators (5.6) are zero matrices. For p$;t and p$f one obtains by direct calculation 

p 2 a d  = i u  p2-3.d = 
Qbc 2 QaC -‘l a a d [ ( s x P ) a ,  ( S x P ) b l + *  

So we have determined the complete set of the Maxwell equation symmetry 
operators in the class I m 2 .  Using the notation given in ( 5 . 2 )  and below formula (5.2), 
it is not difficult to represent the transformations + + Qab+ and + + &+ generated by 
operators (5.6),  in the terms of the electromagnetic field strengths 

where 

g $ = p $ b a c d  - P $ c a b d  - P b P c a a d  + P * ( S a c a b d + a b c a a d  - 8 a b a c d ) .  

The invariance of Maxwell’s equations under transformations ( 5 . 8 )  and (5.9) can be 
easily verified by direct calculation. 
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The operators (5.6) do not form a basis of a Lie algebra. However, one may consider 
subsets of the operators (5.6) which can be extended to the Lie superalgebras. One 
of these subsets includes the following operators: 

Q2=' 2 &abcCa Qbc * 

(5.10) 

where c, are arbitrary numbers satisfying the condition c,c, = 1. The operators (5.10) 
satisfy the relations 

Q' = tEabcCaQbc 

Q 3 = S * p  Q 4 = '  2 CaCbPaPb QS = p2 

[Q", Q b l + = 2  Sab(Q") '  ( Q')2 = ( Q2)2  = Q6 E ( Q4- 9')' 
(Q3I21L = QslL [Q", Q41=[Qa, Q s l = [ Q 4 , Q 5 1 = o  

and so form the basis of the Lie superalgebra together with the operator Q6. This 
superalgebra can be extended by adding the operators Q6+, = iu2S - pQ", Q9+a = 
iu2S. p (  Q")' and Q12+a = p2( Q")', a = 1,2,3,  which satisfy the relations 

[ Q6+', Q6+b]+ = 26abQ'2+b [ Qb]+ = 2SabQ6+b 

[ Q9+,, Q"] = [ Q12+a, Q"] = 0 B = 1 , 2  ) . . . ,  15. 

In conclusion let us give the explicit form of the motion constants of the electromag- 
netic field which correspond to the symmetry operators (5.6). Due to the Maxwell 
equations the following bilinear combinations do not depend on xo and so are conserved 
in time 

l a b  = d3x 1LTQa& = d3x [(rot H),(rOt H)b 

-(rot E),(rOt E)b 
I 
I 

Eap2Eb - Hap2Hb] 

I 
J i a b  = d3x = d3x [ Eap2Hb 

+ Hap2& -(rot E),(rot H)b -(rot H),(rot E)b]. 

(5.11) 

In contrast with the classical motion constants (energy, momentum, etc) the integral 
combinations ( 5 . 1 1 )  depend not only on E and H but also on the derivatives of these 
vectors. 

So starting from the symmetry operators (5.6) found above we obtain ten new 
constants of motion for the electromagnetic field in vacuum given by relations (5.11). 
These motion constants, in contrast to the Lipkin ones (Lipkin 1964, Fradkin 1965, 
Kibble, 1965, Michelsson and Niederle 1984), have nothing to do with the Lorentz or 
conformal invariance of the Maxwell equations inasmuch as the corresponding sym- 
metry operators (5.6) do not belong to the enveloping algebra of the algebra C (  1 , 3 ) 0  H. 
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Note added in p o o j  In the formulation of theorem 3 we have omitted six symmetry operators of the 
massless Dirac equation, which have the form Q,, = -Qv, = [K,, A,]. So this equation has 52 linearly 
independent symmetry operators Q E ERl. All the symmetry operators Q E TRl for the Dirac equation with 
m # 0 belong to the enveloping algebra of algebra P( l , 3 )  inasmuch as operator B (3.3) can be represented 
as DJ, = ~e , ,JP"JFJ ,  on the set of the Dirac equation solutions. 
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